Safely Check for Gas Turbine Fuel/Air Leaks

Traditionally operations and maintenance personnel have used gas detectors to check the fuel pig tail flanges for leaks during the startup process. This is to ensure that no fuel is present that could cause a fire in the compartment. An less risky alternative to this process is to perform a soapy water check while the unit is on crank. A pressurized garden sprayer is filled with soapy water and while the unit is being cranked and sufficient air pressure is present the entire unit is sprayed down with the soapy water mixture. Not only will this produce evidence of leakage at the fuel flanges but will reveal any air leaks on the can bases, the wrapper four way joints, the primary fuel covers or anywhere else air can escape.

Since this a relatively simple and safe procedure TGM® recommends performing this check prior to any maintenance being performed (after the unit is shut down and just before the LOTO is initiated). Any and all air leaks can be identified and they can be addressed during the scheduled maintenance cycle if feasible.

There have been several TIL’s released on the care and quality of the flexible metal hoses for CT’s. The end user has gotten into the practice of having the flexible metal hose pressure checked during the hot gas path cycle. If the soapy water checks are performed prior to any work being performed and any of the flexible metal hoses are leaking then why bother to have them pressure checked. This approach can save expensive labor cost by eliminating a test on a hose that will fall out. Plus wouldn’t it be better to know you have a leak at the wrapper four way joint before it is removed to perform a hot gas path than finding out during the inspection at start up?

Compressor Failures – Stator Vane Lock-up

Some compressor failures have been attributed to “lock-up” of the stator vanes. The vane roots are designed to rock slightly at their roots when moved with your hand. Rust and debris can inhibit this movement. An immobile vane changes the stress profile on the vane which can cause cracking and potential failure. Mechanics should check for proper movement at each inspection.

Removing locked-up stator vanes has been a challenge for service providers. The OEM has come up with material upgrades to address the corrosion problems in these areas. The compressor upgrades are designed to reduce the potential for compressor failures and lock-up of the stator vanes. Some providers use destructive methods to cut out the vanes, potentially damaging the compressor casing. The OEM recommends the use of their (expensive) special tooling to reduce and hopefully prevent casing damage. An alternate method that TGM®has used very successfully is a process of heating and quenching. Heating the locked-up stator vane segments with a torch and quickly quenching the vane with cold water will typically free the vane segment for removal without damaging the casing. The process of heating and quenching (applied by an experienced team) can save time and money while reducing and hopefully eliminating damage to the compressor casing. TGM® can provide its expertise in removing stubborn stator vane segments and, if needed, quickly replace damaged stator vanes to get the customer back on line as soon as possible.

TGM®‘s experienced combustion turbine Technical Directors and crews often delight customers by providing innovative methods that can efficiently and permanently solve issues and get the customer back on line to make power. Early detection of shim migration and stator vane problems can be performed by TGM®through borescope inspections and eddy current NDE.

TGM®‘s comprehensive borescope diagnostics can provide recommendations and solutions to address many other compressor issues. Contact Us to find out how we can help.

Protect your turbine with a good coat

Thermal Barrier Coatings (TBCs) protect the first several rows of hot gas path parts from the high combustion temperatures in many advanced large frame turbines. Not all coating applications are equal, and some can even reduce the efficiency of your unit.
TBCs are designed to reduce the temperature of the buckets and stators while providing resistance to corrosion and reducing oxidation of the component. TBCs form aluminum-oxide and chromium-oxide scales and act as a physical barrier to reduce component temperatures, extending the life of the parts. These TBCs are subjected to mechanical stresses, and spallation (coating separation) can occur. If a significant amount of TBC has separated from the metal, the parent metal will be exposed to the hot combustion gases and component degradation will be accelerated.
Hot gas path components should be inspected for TBC spallation at every Hot Gas Path or Major outage. Streaks of brown lines that appear to be coming from the cooling holes are a good sign that the component is receiving adequate cooling air, and spallation is at a minimum. When receiving components from the repair shop it is important to carefully inspect the components for an even coat of TBC. Also inspect the cooling air passages for debris and proper sizing to ensure that proper air flow can pass through the tiny passages for designed cooling.

When a water wash fails to recover efficiency…

If a combustion turbine experiences reduced power output and heat rate, the usual suspect is compressor fouling. But what if cleaning the compressor through on-line and off-line wash is not enough to recover lost compressor efficiency?

Some users experience no gain in gas turbine output or improvement in heat rate even after a Major outage. A likely suspect is the first row nozzles; refurbished or degraded nozzles may be contributing to the problem. In many large combustion turbine frames such as the GE 7FA, the amount of compressed air used for cooling has a significant impact on gas turbine efficiency. The first row nozzles in a 7FA can use up to 20% of the air developed by the compressor for cooling. Turbine efficiency can be greatly reduced if these cooling holes are enlarged and use too much air for cooling. First stage nozzle cooling holes may not have been checked for hole dimensions during the refurbishment process. This can also affect your ability to tune low NOx combustion systems. The amount of air being used by first row nozzles affects the fuel/air ratio, making it more difficult to tune the unit.

The only solution is to remove the first row nozzles and replace with new or refurbished first row nozzles with correct cooling hole dimensions. It is also worthwhile to check the first row nozzles when they come back from the repair shop to ensure the cooling holes are not blocked and are the correct dimension before installing them into the unit.

Your fuel bill (and possibly your EPA permit) will thank you for it.